1,169 research outputs found

    Therapeutic Potential of Mesenchymal Stem Cells for Cancer Therapy

    Get PDF
    Mesenchymal stem cells (MSCs) are among the most frequently used cell type for regenerative medicine. A large number of studies have shown the beneficial effects of MSC-based therapies to treat different pathologies, including neurological disorders, cardiac ischemia, diabetes, and bone and cartilage diseases. However, the therapeutic potential of MSCs in cancer is still controversial. While some studies indicate that MSCs may contribute to cancer pathogenesis, emerging data reported the suppressive effects of MSCs on cancer cells. Because of this reality, a sustained effort to understand when MSCs promote or suppress tumor development is needed before planning a MSC-based therapy for cancer. Herein, we provide an overview on the therapeutic application of MSCs for regenerative medicine and the processes that orchestrates tissue repair, with a special emphasis placed on cancer, including central nervous system tumors. Furthermore, we will discuss the current evidence regarding the double-edged sword of MSCs in oncological treatment and the latest advances in MSC-based anti-cancer agent delivery systems.Junta de Andalucía PI-0272-2017Ministerio de Ciencia, Innovación y Universdad CD16/00118, CP19/00046, PI16/00259, BFU2017-83588-P, CP14/00105, PI18/01590, PI17/02104, PIC18/0010, IC19/0052Juvenile Diabetes Research Foundation (USA) 2-SRA-2019-837-S-BFundación Española para la Ciencia y la Tecnología 2018-00023

    Transcriptional response of pancreatic beta cells to metabolic stimulation: large scale identification of immediate-early and secondary response genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Physiological long term adaptation of pancreatic beta cells is driven by stimuli such as glucose and incretin hormones acting via cAMP (e.g. GLP-1) and involves regulated gene expression. Several rapidly inducible immediate-early genes (IEGs) have been identified in beta cells. Many of these IEGs code for transcription factors and have the potential to control the transcription of downstream <it>target </it>genes likely involved in long term cellular adaptation. The identity of these <it>target </it>genes has not been determined, and the sequence of events occurring during beta cell adaptation is still unclear.</p> <p>Results</p> <p>We have developed a microarray-based strategy for the systematic search of <it>targets</it>. In Min6 insulin-secreting cells, we identified 592 <it>targets </it>and 1278 IEGs responding to a co-stimulation with glucose and cAMP. Both IEGs and <it>targets </it>were involved in a large panel of functions, including those important to beta cell physiology (metabolism, secretion). Nearly 200 IEGs were involved in signaling and transcriptional regulation. To find specific examples of the regulatory link between IEGs and <it>targets</it>, <it>target </it>promoter sequences were analyzed <it>in silico</it>. Statistically significant over-representation of AP-1 response elements notably suggested an important role for this transcription factor, which was experimentally verified. Indeed, cell stimulation altered expression of IEG-encoded components of the AP-1 complex, activating AP-1-dependent transcription. Loss and gain-of-function experiments furthermore allowed to validate a new AP-1 regulated gene (<it>sulfiredoxin</it>) among the <it>targets</it>. AP-1 and <it>sulfiredoxin </it>are sequentially induced also in primary cells from rat islets of Langerhans.</p> <p>Conclusion</p> <p>By identifying IEGs and their downstream <it>targets</it>, this study brings a comprehensive description of the transcriptional response occurring after beta cell stimulation, as well as new mechanistic insights concerning the AP-1 transcription factor.</p

    Magnetic structure of the antiferromagnetic half-Heusler compound NdBiPt

    Full text link
    We present results of single crystal neutron diffraction experiments on the rare-earth, half-Heusler antiferromagnet (AFM) NdBiPt. This compound exhibits an AFM phase transition at TN=2.18T_{\mathrm N}=2.18~K with an ordered moment of 1.78(9)1.78(9)~μB\mu_{\mathrm B} per Nd atom. The magnetic moments are aligned along the [001][001]-direction, arranged in a type-I AFM structure with ferromagnetic planes, alternating antiferromagnetically along a propagation vector τ\tau of (100)(100). The RRBiPt (RR= Ce-Lu) family of materials has been proposed as candidates of a new family of antiferromagnetic topological insulators (AFTI) with magnetic space group that corresponds to a type-II AFM structure where ferromagnetic sheets are stacked along the space diagonal. The resolved structure makes it unlikely, that NdBiPt qualifies as an AFTI.Comment: As resubmitted to PRB, corrected typos and changed symbols in Fig.

    Characterization of the "diabesity" gene HMG20A in pancreatic islets

    Get PDF
    Motivation: Type 2 Diabetes (T2D) accounts for 90-95% of diagnosed diabetic patients, which tendency in the next years is also expected to increase. Recent genomic wide association studies showed a correlation of an allelic variation of HMG20A with T2D in some ethnic groups. Up to date, there is no scientific evidence of the role of this gene in pancreatic tissue. But, in central nervous system, HMG20A regulates the expression of NeuroD, common in pancreas and nervous system morphogenesis. Here, our group makes an approach to characterize HMG20A in pancreatic islets, focusing on its involvement in glucose-stimulated insulin secretion (GSIS) and pancreatic islets development. We want to demonstrate that: 1) HMG20A is expressed in endocrine pancreas 2) HMG20A modifies expression of genes involved in pancreas development 3) silencing HMG20A affects expression levels of insulin secretion related genes and functionality.Methods: Qualitative expression of HMG20A is tested out in slides of pancreatic sections obtained from control mice. Co-localization with α or β cells is analyzed by immunofluorescence using anti-HMG20A, anti-insulin/glucagon antibodies and Dapi for nuclei. INS-1E cells are cultured and treated with a specific siRNA against HMG20A or a non-specific siRNA control during 72h. Genes involved in insulin secretion and endocrine pancreas development are assayed via qRT-PCR in INS1-E cells after siRNA treatment. Pdx1, Pax4, MafA and HMG20A expression levels are assessed following 2-ΔΔCt method. Finally, HMG20A silenced mouse islets and INS-1E are cultured at low glucose (2.8 mM) and high glucose medium (22 mM) following quantification of insulin secretion by ELISA.Results: Immunofluorescence confirmed co-localization of HMG20A with insulin (β-cell) and with glucagon (α-cells) producing cells in mouse pancreas. HMG20A expression diminished a 60% after treating INS1-E cells with a specific siRNA for HMG20A. Insulin secretion regulator gene, MafA, is downregulated significantly (50-60%) after HMG20A silencing. Pax4 expression significantly increased meanwhile Pdx1 showed a tendency to decrease. A 40% drop in insulin secretion is obtained in siHMG20A treated mouse islets compared to control.Conclusions: This data confirms HMG20A expression in pancreatic islets and impairment of insulin secretion when it is knocked down. Hence, concluding that HMG20A plays an important role in physiological GSIS and regulating pancreatic development related genes

    The diabetes-linked transcription factor PAX4: from gene to functional consequences

    Get PDF
    Paired box 4 (PAX4) is a key factor in the generation of insulin producing β-cells during embryonic development. In adult islets, PAX4 expression is sequestered to a subset of β-cells that are prone to proliferation and more resistant to stress-induced apoptosis. The importance of this transcription factor for adequate pancreatic islets functionality has been manifested by the association of mutations in PAX4 with the development of diabetes, independently of its etiology. Overexpression of this factor in adult islets stimulates β-cell proliferation and increases their resistance to apoptosis. Additionally, in an experimental model of autoimmune diabetes, a novel immunomodulatory function for this factor has been suggested. Altogether these data pinpoint at PAX4 as an important target for novel regenerative therapies for diabetes treatment, aiming at the preservation of the remaining β-cells in parallel to the stimulation of their proliferation to replenish the β-cell mass lost during the progression of the disease. However, the adequate development of such therapies requires the knowledge of the molecular mechanisms controlling the expression of PAX4 as well as the downstream effectors that could account for PAX4 action.Junta de Andalucía PI-0727-2010 to B.R.G.Junta de Andalucía PI-0085-2013 to P.I.L.Junta de Andalucía Consejería de Economía, Innovación y Ciencia P10-CTS-6359 to B.R.G.Junta de Andalucía Consejería de Economía, Innovación y Ciencia P12-CTS-2064 to M.G.-

    The cannabinoid ligand LH-21 reduces anxiety and improves glucose handling in diet-induced obese pre-diabetic mice

    Get PDF
    LH-21 is a triazol derivative that has been described as a low-permeant neutral CB1 antagonist, though its pharmacology is still unclear. It has been associated with anti-obesity actions in obese rats. However, its role in preventing type 2 diabetes (T2D) onset have not been studied yet. Given CB1 receptors remain as potential pharmacological targets to fight against obesity and T2D, we wanted to explore the metabolic impact of this compound in an animal model of obesity and pre-diabetes as well as the lack of relevant actions in related central processes such as anxiety. C57BL/6J mice were rendered obese and pre-diabetic by feeding a high-fat diet for 15 weeks and then treated with LH-21 or vehicle for two weeks. Food intake, body weight and glucose handling were assessed, together with other relevant parameters. Behavioural performance was evaluated by the open field test and the elevated plus maze. LH-21 did not affect food intake nor body weight but it improved glucose handling, displaying tissue-specific beneficial actions. Unexpectedly, LH-21 induced anxiolysis and reverted obesity-induced anxiety, apparently through GPR55 receptor. These results suggest that LH-21 can be a new candidate to fight against diabetes onset. Indeed, this compound shows potential in counteracting obesity-related anxiety.España, Ministerio de Sanidad 13/00309 to F.J.B.S. and PI13/00593 to B.R.GConsejería de Salud Junta de Andalucía C-0070-201

    Targeting LRH-1/NR5A2 to treat type 1 diabetes mellitus

    Get PDF
    Type 1 diabetes mellitus (T1DM) is defined as an autoimmune disease that targets the selective destruction of islet insulin-producing beta cells by infiltrating immune cells (insulitis). As a result, the organism is no longer able to produce insulin and develops hyperglycaemia and, if untreated, death. Despite advances in medical device technology and insulin analogues as well as strives in generating in vitro insulin-producing cells, there is still no robust therapy to substitute and protect beta cells that are lost in T1DM. Clinical trials aimed at blocking the immune-mediated beta cell destruction have had moderate success leaving a gap in our understanding of disease aetiology. Such breach in knowledge may stem from the oversight that inhibiting the immune attack likely impairs beta cell regeneration and emphasizes a fundamental paradigm in the approach to treat the disease: A non-mutually exclusive strategy in which the uncontrolled self-directed inflammatory immune response (and not the global immune system) as well as beta cell regeneration are exquisitely fine tuned in order to successfully regain immunological tolerance and restoration of a functional beta cell mass. As such, defining factors that can guide a pro-inflammatory immune cell destructive environment towards an anti-inflammatory environment facilitating beta cell survival and stimulate regeneration would define an unprecedented class of immune-regenerative therapeutic agents for T1DM. In our recent study we identify the liver receptor homolog 1 (LRH-1, also known as NR5A2) as a ‘druggable’ target that fulfills these criteria restoring glycemic control in various mouse models of T1DM as well as improving human islet survival and function both in vitro and in vivo (Nat Comms, 9:1488)

    The diabetes-linked transcription factor PAX4 promotes β-cell proliferation and survival in rat and human islets

    Get PDF
    The mechanism by which the β-cell transcription factor Pax4 influences cell function/mass was studied in rat and human islets of Langerhans. Pax4 transcripts were detected in adult rat islets, and levels were induced by the mitogens activin A and betacellulin. Wortmannin suppressed betacellulin-induced Pax4 expression, implicating the phosphatidylinositol 3-kinase signaling pathway. Adenoviral overexpression of Pax4 caused a 3.5-fold increase in β-cell proliferation with a concomitant 1.9-, 4-, and 5-fold increase in Bcl-xL (antiapoptotic), c-myc, and Id2 mRNA levels, respectively. Accordingly, Pax4 transactivated the Bcl-xL and c-myc promoters, whereas its diabetes-linked mutant was less efficient. Bcl-xL activity resulted in altered mitochondrial calcium levels and ATP production, explaining impaired glucose-induced insulin secretion in transduced islets. Infection of human islets with an inducible adenoviral Pax4 construct caused proliferation and protection against cytokine-evoked apoptosis, whereas the mutant was less effective. We propose that Pax4 is implicated in β-cell plasticity through the activation of c-myc and potentially protected from apoptosis through Bcl-xL gene expression
    • …
    corecore